قضیهٔ زاویه خارجی مثلث. اندازهٔ هر زاویهٔ خارجی در یک مثلث دلخواه برابر است با مجموع اندازه‌های زاویه‌های داخلی غیرمجاورش.


فرض. یک مثلث دلخواه داریم.
حکم. اندازهٔ هر زاویهٔ خارجی در این مثلث برابر است با مجموع اندازه‌های زاویه‌های داخلی غیرمجاورش.

قضیه های هندسه


اثبات. مطابق شکل زیر، فرض کنیم زاویهٔ \(ACD\) زاویهٔ خارجی مثلث \(ABC\) باشد. می‌خواهیم ثابت کنیم \(A\widehat{C}D=\widehat{A}+\widehat{B}\).

زاویه خارجی مثلث

واضح است: \[\begin{aligned}&A\widehat{C}B+A\widehat{C}D=180^\circ\\&\Rightarrow A\widehat{C}D=180^\circ-A\widehat{C}B.\quad(1)\end{aligned}\]
از طرفی، بنابه قضیهٔ مجموع زاویه‌های مثلث داریم:
\[\begin{aligned}&\widehat{A}+\widehat{B}+A\widehat{C}B=180^\circ\\&\Rightarrow\widehat{A}+\widehat{B}=180^\circ-A\widehat{C}B.\quad(2)\end{aligned}\]
از رابطه‌های \((1)\) و \((2)\) نتیجه می‌شود:
\[A\widehat{C}D=\widehat{A}+\widehat{B}.\]

تجزیه عبارتهای جبری



اطلاع فوری از کدهای تخفیف، جایزه‌ها، و کلاس‌های تکمیلی


نوشته‌های قبلی و بعدی

اشتراک‌گذاری در واتساپ اشتراک‌گذاری در واتساپ



ارسال کامنت و دیدگاه

در اولین فرصت به کامنت شما پاسخ می‌دهیم و بلافاصله یک ایمیل برایتان ارسال می‌کنیم. ❤️

6 پرسش و نظر
Inline Feedbacks
مشاهده همه نظرات

بهتر نبود بنویسید
A+B+C1=180
C1+C2=180
پس نتیجه میگیریم:
A+B=C2

فرقی نمی‌کنه!
شما زاویه‌ها را با عدد اسم‌گذاری کرده‌اید و در نوشتهٔ بالا، هر زاویه با سه حرف نمایش داده شده است.

👌🏼

عالی مرسی?

واقعا ممنون
از این که مطالب دقیق رو میذارید و این که سایتتون طراحی خوب و عالی داره.

عالی بود ممنون