دانش‌آموزان عزیز می‌توانند با حل این مسائل میزان توانایی خود را در مباحث فصل ۴ کتاب ریاضی و ریاضی تکمیلی هشتم بسنجند.
معلم‌های عزیز می‌توانند از این مسائل در کلاس درس یا آزمون‌ها استفاده کنند.

تعداد این مسائل، به‌مرور افزایش می‌یابد.


۱. اگر \(a<0\)، \(b>0\)، و \(c<0\)، چندتا از عبارت‌های زیر منفی هستند؟ (آزمون پیشرفت تحصیلی سمپاد، فروردین ۹۷)
\[ab^2c\quad(b-a)^3\quad(ac^2-b^2c)\quad\frac{a^3b^3}{b^6c^2}\]
۱) حداقل دو تا
۲) حداکثر دو تا
۳) بیش از دو تا
۴) کمتر از دو تا

پاسخ تشریحی

۲. معادلهٔ \(x+3y=50\) چند جواب صحیح نامنفی دارد؟ (آزمون پیشرفت تحصیلی سمپاد، فروردین ۹۷)

پاسخ تشریحی

۳. چندتا از تساوی‌های زیر به‌ازای هر مقدار عددی برای متغیرها همواره درست هستند؟ (آزمون پیشرفت تحصیلی سمپاد، فروردین ۹۷)
\[\begin{aligned}&(a-b)(a^2-ab+b^2)=a^3-b^3\\&(a-1)(a^2-2)=a^3-3a+2\\&x^4+1=(x^2-x+1)(x^2+x+1).\end{aligned}\]

پاسخ تشریحی

۴. در چند تا از عبار‌ت‌های زیر سمت راست تساوی تجزیه شده و سمت چپ تساوی تجزیه نشده است؟ (آزمون پیشرفت تحصیلی سمپاد، بهمن ۹۶)
عبارت اول: $8x=2^3x$
عبارت دوم: $8x^2=8xx$
عبارت سوم: $x^2+2x=(x+2)x$
عبارت چهارم: $x-y=x\big(1-\dfrac{y}{x}\big)$

پاسخ تشریحی

۵. اگر $a>0$، $b<0$ و $c<0$، آنگاه چندتا از عبارت‌های زیر منفی هستند؟ (آزمون پیشرفت تحصیلی سمپاد، بهمن ۹۶)
$\bullet\quad$ $ab^2c$
$\bullet\quad$ $(b-a)^3$
$\bullet\quad$ $(ac-b^2c)$
$\bullet\quad$ $\dfrac{a^3b^3}{b^6c^2}$
۱) حداقل سه تا
۲) حداکثر سه تا
۳) بیشتر از سه تا
۴) کمتر از سه تا

پاسخ تشریحی

۶. اگر یک سه‌جمله‌ای را در یک سه‌جمله‌ای ضرب کنیم، تعداد جملات حاصل چه عددی نمی‌تواند باشد؟ (آزمون پیشرفت تحصیلی سمپاد، بهمن ۹۶)

پاسخ تشریحی

۷. اگر $a$، $b$، و $c$ سه عدد طبیعی باشند، کدام‌یک از معادله‌های زیر جواب دارد؟ (آزمون پیشرفت تحصیلی سمپاد، بهمن ۹۶)

معادلهٔ اول: $\dfrac{41}{42}=\dfrac{1}{a}+\dfrac{1}{b}$

معادلهٔ دوم: $\dfrac{41}{42}=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}$

پاسخ تشریحی

۸. اگر $a+b=10$ باشد، آنگاه حاصل $5a^2+a^2b+ab^2+5b^2$ چه عددی است؟ (آزمون پیشرفت تحصیلی سمپاد، بهمن ۹۶)

پاسخ تشریحی

۹. معادله‌ای که نشان‌دهندهٔ عبارت زیر باشد چیست؟ (آزمون پیشرفت تحصیلی سمپاد، بهمن ۹۶)
«اگر سه برابر عددی را از نصف آن عدد کم کنیم، حاصل از \(100\) به اندازهٔ $x$ واحد کمتر است.»

۱) $3x-\dfrac{1}{2}x=100-x$

۲) $\dfrac{1}{2}x-3x=100-x$

۳) $3y-\dfrac{1}{2}y=100-x$

۴) $\dfrac{1}{2}y-3y=100-x$

پاسخ تشریحی

۱۰. مقدار عددی عبارت \(\frac{b^2-3b}{ab-2a^2}\) به‌ازای \(a=-2\) و \(b=-3\) چقدر است؟ (آزمون پیشرفت تحصیلی سمپاد، فروردین ۹۶)

پاسخ تشریحی

۱۱. مقدار \(x\) در معادلهٔ زیر چیست؟ (آزمون پیشرفت تحصیلی سمپاد، فروردین ۹۶)
\[\frac{\frac{3}{1+2x}}{\frac{1}{x-4}}=1\frac{3}{5}.\]

پاسخ تشریحی

۱۲. با ذکر دلیل مشخص کنید که کدام عبارت درست و کدام نادرست است. (آزمون پیشرفت تحصیلی سمپاد، فروردین ۹۶)
\(\bullet\) اگر \(m > 3\)، آنگاه \(1\times2\times\dots\times m+(m-2)\)، مرکب است.
\(\bullet\) اگر از مربع یک عدد فرد، یک واحد کم کنیم، حاصل بر \(4\) بخش‌پذیر است.
\(\bullet\) حاصل \(m(\sqrt{2}-\sqrt{3})(\sqrt{2}+\sqrt{3})\) همواره عددی گویا است.

پاسخ تشریحی

۱۳. اگر \(A=x^2-3\) و\(B=x^3+2x-7\)، \(A^2-Bx\) به‌ازای \(x=-3\) چه خواهد بود؟ (آزمون پیشرفت تحصیلی سمپاد، فروردین ۹۶)

پاسخ تشریحی

۱۴. مقدار عددی عبارت \(-a^3b^2-ab^3+(ab)^2\) را به‌ازای \(a=-1\) و \(b=-2\) به‌دست آورید. (آزمون پیشرفت تحصیلی سمپاد، ادیبهشت ۹۵)

پاسخ تشریحی

۱۵. می‌دانیم که مجموع عدد سه‌رقمی \(\overline{abc}\) و \(9\) برابر مقلوب آن، زوج است. در این‌صورت حتماً… (آزمون پیشرفت تحصیلی سمپاد، ادیبهشت ۹۵)
۱) \(b\) صفر است و \(a\) و \(c\) زوج هستند.
۲) \(a\) و \(b\) و \(c\) هر سه زوج هستند.
۳) \(a\) و \(c\) یا هر دو زوج هستند، یا هر دو فرد.
۴) \(a\) و \(c\) زوج هستند و \(b\) فرد است.

پاسخ تشریحی

۱۶.کدام گزینه معادل با عبارت \(4x(y-2x)-2y(2x-4y)\) است؟ (آزمون پیشرفت تحصیلی سمپاد، ادیبهشت ۹۵)
۱) \(8(x^2+y^2)\)
۲) \(-8x^2-8y^2\)
۳) \(8(x^2+y^2-xy)\)
۴) \(8(y^2-x^2)\)

پاسخ تشریحی

۱۷. می‌دانیم $x$، $y$ و $z$ سه عدد متفاوت هستند و یکی از آنها $3$، دیگری $4$، و یکی دیگر $5$ است. بیشترین مقدار عبارت $-x^y-\frac{1}{z}$ کدام است؟ (آزمون پیشرفت تحصیلی سمپاد، فروردین ۹۴)

پاسخ تشریحی


$\bullet$ باتوجه‌به متن زیر به سؤال‌های ۱۸، ۱۹، و ۲۰ پاسخ دهید. (آزمون پیشرفت تحصیلی سمپاد، فروردین ۹۴)

اگر $a$ و $b$ دو عدد باشند، حاصل $a\bot b$ برابر $a-\frac{b}{2}$ می‌شود و حاصل $a\top b$ برابر $\frac{a}{2}-b$ می‌شود. برای مثال:
\[2\bot 4=2-\frac{4}{2}=0,\quad 2\top 4=\frac{2}{2}-4=-3.\]

۱۸. حاصل $x+y$ با کدام‌یک از گزینه‌های زیر برابر نیست؟
۱)$(2x)\top(-y)$
۲) $(x)\bot(-2y)$
۳) $2\big(x\bot(x-y)\big)$
۴) $2\big(x\top(x-y)\big)$

پاسخ تشریحی

۱۹. با ذکر دلیل، درستی یا نادرستی هریک از عبارت‌های زیر را مشخص کنید.
ادعای اول: اگر $a\top b=a\bot b$، آنگاه $a$ و $b$ قرینه یکدیگرند.
ادعای دوم: اگر $a\top b=b\top a$، آنگاه $a$ و $b$ باهم برابرند.

پاسخ تشریحی

۲۰. با پرانتزگذاری عبارت $2\bot2\top2\bot2$،‌ حاصل حداکثر چیست؟

پاسخ تشریحی


۲۱. الگوی زیر را با دقت ببینید. مریم می‌خواست تعداد چوب‌کبریت‌های شکل $15$ و آزاده می‌خواست تعداد چوب‌کبریت‌های شکل $10$ را حساب کند. درستی یا نادرستی هریک از راه‌حل‌های زیر را بررسی کنید. (آزمون پیشرفت تحصیلی سمپاد، فروردین ۹۴)


راه‌حل مریم:
\[15\times(6\times 15)-(1\times 6)-(2\times6)-(3\times6)-(4\times6)-\dots-(13\times6)\]
راه‌حل آزاده:
\[6+(2\times6+6)+(3\times6+6)+(4\times 6+6)+\cdots+(10\times 6+6)\]

پاسخ تشریحی

۲۲. اگر $a$ و $b$ دو عدد صحیح باشند، آنگاه تعداد جملات حاصل‌ضرب $(x^2+ax+1)(x+b)$ پس از ساده‌کردن چندتا می‌تواند باشد؟ (آزمون پیشرفت تحصیلی سمپاد، فروردین ۹۴)

پاسخ تشریحی

۲۳. چندتا از تساوی‌های زیر، تجزیه یک عبارت جبری را نشان می‌دهد؟ (آزمون پیشرفت تحصیلی سمپاد، فروردین ۹۴)
تساوی اول: $x^2+x+1=x(x+1)+1$
تساوی دوم: $2y^2+5y=2y\big(y+\frac{5}{2}\big)$

پاسخ تشریحی

 

ویدئوی هفته

قانون دنبالهٔ زیر چیست؟
\[0,1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10,\dots\]

 

مسئلهٔ هفته

\[1+3+5+7+\dots+(2n-1)=?\]
 

کتاب هفته

خدمتکار و پروفسور

دسترسی سریع

هوش ET
اشتراک
اطلاع از
1 دیدگاه
Inline Feedbacks
مشاهده همه نظرات

این سال رو خیلی خوبه که نمونه سوال سمپاد گذاشتین ولی بقیه فصل ها نه چون فکرمیکنم همش از سمپاد نیست ، در ضمن اگر میشه تا ازمون سمپاد سریعتر نمونه سوال هارو کامل کنید. تشکر