فاکتورگیری

برای اینکه درسنامه‌های سایت تکمیلی به‌خوبی بیاموزید، حتماً روی لینک زیر کلیک کنید و از روش ارائه شده در آن استفاده کنید.

چگونه درسنامه‌های سایت تکمیلی را بخوانیم؟


معمولاً دانش‌آموزان در عملیات پخشی (توزیع‌پذیری ضرب نسبت به جمع)، مشکل خاصی ندارند؛ اما در فاکتورگیری (که برعکس عملیات پخشی است)، دچار مشکل می‌شوند!
\[\begin{aligned}&\overset{\text{~~~پخشی~~~}}{\longrightarrow}\\[-4pt]a(b+&c)=ab+ac\\[-4pt]&\underset{\text{فاکتورگیری}}{\longleftarrow}\end{aligned}\]
اگر با فاکتورگیری مشکل دارید، مثال‌ها و تمرین‌های زیر بخوانید و به نحوهٔ نوشتن راه‌حل‌ها دقت کنید تا ایرادهای شما در این موضوع بسیار مهم برطرف شود.

یک تمرین اساسی

همیشه پس از اینکه حاصل‌ضرب دو یا چند عبارت جبری را به‌دست آوردید، از خودتان بپرسید که اگر حاصل را به شما داده بودند، چگونه باید آن را تجزیه می‌کردید. برای مثال، وقتی حاصل \((x+3)(y+1)\) را به‌دست آورید:
\[\begin{aligned}&(x+3)(y+1)\\&=x(y+1)+3(y+1)\\&=xy+x+3y+3.\end{aligned}\]
از خودتان بپرسید که چگونه باید \(xy+x+3y+3\) را تجزیه کنید. پاسخ این پرسش، جلوی رویمان است! کافی است راه‌حل بالا را برعکس بنویسیم:
\[\begin{aligned}&xy+x+3y+3\\&=\Big({\color{blue}x}y+{\color{blue}x}\times1\Big)+\Big({\color{red}3}y+{\color{red}3}\times1\Big)\qquad\text{دسته‌بندی}\\&={\color{blue}x}(y+1)+{\color{red}3}(y+1)\qquad\text{3 و x فاکتورگیری از}\\&=(y+1)({\color{blue}x}+{\color{red}3})\qquad\text{y+1 فاکتورگیری از}\end{aligned}\]

فاکتورگیری در محاسبات عددی

در برخی از تمرین‌های محاسبه‌ای، اگر از فاکتورگیری استفاده کنیم راه‌حل بسیار ساده‌تر خواهد بود.

مثال ۱. حاصل عبارت \(23\times87+77\times87\) را محاسبه کنید.


مثال ۲. در هر قسمت، تجزیه شدهٔ حاصل عبارت داده شده را بیابید.
الف) \(5\times13+12\times13\)

ب) \(37\times5-4\times25\)

ج) \(23\times50+7\times46\)

فاکتورگیری از یک‌جمله

ساده‌ترین تمرین‌های فاکتورگیری، فاکتورگیری از یک جمله‌ است. معمولاً دانش‌آموزان با چنین تمرین‌هایی مشکل چندانی ندارند.

مثال ۳. با استفاده از فاکتورگیری، جاهای خالی را پر کنید.
الف) \(-3x^4-9x^2=-3x^2(\cdots+\cdots)\)


ب) \(5x^2-20x=\cdots(\cdots-4)\)

مثال ۴. هریک از عبارت‌های زیر را تجزیه کنید.
الف) \(6y^3z-4yz^2\)

ب) \(27x^4-18x^3+9x^2\)

ج) \((6-m)m-m(7+m)\)

مثال ۵. همهٔ اعداد طبیعی‌ مانند \(n\) را بیابید که برای آنها، حاصل عبارت \(5n^2+12n\) عددی اول شود.

فاکتورگیری از دوجمله یا بیشتر از دو جمله

با اینکه فاکتورگیری از دو جمله یا بیشتر، تفاوتی با فاکتورگیری از یک جمله ندارد، اما دانش‌آموزان معمولاً در چنین تمرین‌هایی دچار مشکل می‌شوند. برای رفع چنین مشکلی، کافی است آن چند جمله را، یک جمله یا یک موجود فرض کنیم. در راه‌حل‌های زیر، موجودی که از آن فاکتور گرفته‌ شده با رنگ متفاوت نشان داده شده است.

مثال ۶. هریک از عبارت‌های زیر را تجزیه کنید.
الف) \((x+2)(a+b)+(x+2)(a-b)\)


ب) \((m+1)^2-2(m+1)\)

ج) \((y-1)^2+y(y-1)+8(y-1)\)

د) \((a+5)^2-(a+5)\)

فاکتورگیری دو مرحله‌ای

در بسیاری از تمرین‌های تجزیه، فقط با یک‌بار فاکتورگیری، عبارت داده شده تجزیه نمی‌شود. در برخی از این تمرین‌ها با دسته‌بندی و دوبار فاکتورگیری، می‌توان عبارت داده شده را تجزیه کرد.
مثال ۷. هریک از عبارت‌های زیر را تجزیه کنید.
الف) \((x-2)(x-4)+4x-8\)


ب) \((y+1)(y+5)-3y-15\)

ج) \(m^3-2m^2+3m-6\)

د) \(n^3+n^2+n+1\)

فاکتورگیری یا اتحادها؟!

توجه کنید که وقتی از اتحادها برای تجزیه کردن استفاده می‌کنید، درواقع از همان فاکتورگیری استفاده می‌کنید! برای مثال، با استفاده از اتحاد مربع دوجمله‌ای، عبارت \(a^2+2ab+b^2\) به‌سادگی تجزیه می‌شود:
\[a^2+2ab+b^2=(a+b)^2.\]
در اینجا شما یک فرمول را حفظ کرده‌اید و آن را به‌کار می‌برید. اگر بخواهید یک‌بار درستی این فرمول را نشان دهید، می‌توانید این‌گونه بنویسید:
\[\begin{aligned}&a^2+2ab+b^2\\&=a^2+ab+ab+b^2\\&=({\color{red}a}^2+{\color{red}a}b)+(a{\color{blue}b}+{\color{blue}b}^2)\\&={\color{red}a}(a+b)+{\color{blue}b}(a+b)\\&=({\color{red}a}+{\color{blue}b})(a+b)\\&=(a+b)^2.\end{aligned}\]
به‌عنوان مثال دیگر، اتحاد مزدوج به‌سادگی عبارت \(a^2-b^2\) را تجزیه می‌کند:
\[a^2-b^2=(a-b)(a+b).\]
اما اگر بخواهید درستی فرمول بالا را نشان دهید، می‌توانید بنویسید:
\[\begin{aligned}&a^2-b^2\\&=a^2+ab-ab-b^2\\&=(a^2+ab)+(-ab-b^2)\\&=a{\color{red}(a+b)}-b{\color{red}(a+b)}\\&=(a-b){\color{red}(a+b)}.\end{aligned}\]

زنگ تفریح


برای اینکه به مسائل فاکتورگیری مسلط‌تر شوید، حتماً تمرین‌های فاکتورگیری را حل کنید. 

تمرین‌های فاکتورگیری


فاکتورگیری با جئوجبرا

با استفاده از نرم‌افزار جئوجبرا و دستور Factor می‌توانید عبارت‌های جبری را تجزیه کنید. برای مشاهدهٔ فیلم آموزشی، اینجا را کلیک کنید.

 

اشتراک
اطلاع از
3 Comments
Inline Feedbacks
مشاهده همه نظرات

ایده انیمیشن آخر درسنامه، یه ایده جدید و جذابه(حداقل به نظر من!!)
ممنون از سایت عالیتون

با تشکر انتهای بخش یک تمرین اساسی به خوبی نمایش داده نمی شود .
لطفا مشکل را برطرف کنید…